EM540

Energieanalysator für Dreiphasen- und Zweiphasensysteme

Beschreibung

Der EM540 ist ein Energieanalysator für Direktanschluss, für Zwei- und Dreiphasensysteme bis zu 415 V L-L und Strom bis zu 65 A. Zusätzlich zu einem digitalen Eingang kann die Einheit je nach Modell mit einem statischen Ausgang (Impuls oder Alarm), einem Modbus- RTU-Kommunikationsport oder einem M-Bus-Kommunikationsport ausgestattet werden.

Vorteile

- Verbesserte Ablesbarkeit. Die Hintergrundbeleuchtung des Displays stellt perfekte Sichtbarkeit selbst in schwachen Lichtverhältnissen sicher. Die unterschiedliche Größe der Ziffern vor und nach dem Dezimalpunkt erleichtert das Ablesen der angezeigten Werte, während der wesentliche Stil der Maßeinheiten Ihnen ein leichtes Verständnis der verfügbaren Messgrößen ermöglicht.
- Einfaches Browsen. Das Einrichten und Browsen der Seiten sind sehr intuitiv dank der Benutzerschnittstelle mit 3 mechanischen Drucktasten. Die Slideshow-Funktion zeigt automatisch die gewünschten Messungen in Folge an, ohne dass das Tastenfeld benutzt werden müsste; der Seitenfilter erlaubt Ihnen, unnötige Information zu auszublenden.
- Schnelle Konfiguration. Der Konfigurationsassistent, der beim allerersten Systemstart läuft, erlaubt Ihnen, die Einheit ohne Fehler in einigen Sekunden in Dienst zu stellen. Die UCS-Konfigurationssoftware steht kostenlos zum Herunterladen zur Verfügung.
- Genaue Messung. Der EM540 ist mit dem internationalen Genauigkeitsstandard IEC/EN 62053-21 und den in IEC/EN 61557- 12 niedergelegten Leistungsanforderungen (Leistung und Wirkenergie) konform.
- Abrechnungsmessung. Die gleitenden Anschlussabdeckungen (Patent angemeldet in EU, US, CA, AU) können versiegelt werden, um jegliche Manipulation der Anschlüsse zu verhindern, was dank der MID-Zertifikation der Einheit erlaubt, Messungen für Abrechnungszwecke durchzuführen, und für einen verstärkten Schutz an den Stromanschlüssen sorgt.
- Flexible Installation. Er kann in Niederspannungssystemen mit zwei Phasen, drei Phasen mit Neutral, drei Phasen ohne Neutral und Wild-Leg- Dreiphasen- Konfiguration installiert werden. Betriebstemperatur bis 70 °C/158 °F.
- Leistungsstarke Integration In Kombination mit UWP (einem Energie- Überwachungs- und Steuerungsgateway, hergestellt von Carlo Gavazzi) erlaubt er Ihnen, ein skalierbares und flexibles System zur Überwachung der Energieeffizienz von Gebäuden und Anlagen aufzubauen.

Ar

Anwendungen

Der EM540 kann in einer beliebigen Niederspannungsschaltanlage mit Nennstrom bis zu 65 A zur Überwachung des Energieverbrauchs, der elektrischen Hauptgrößen und der harmonischen Verzerrung eingebaut werden.

Bei Überwachung einer einzelnen Maschine stellt er alle hauptsächlichen elektrischen Messgrößen zum frühzeitigen Erkennen jeglicher Fehlfunktion bereit und kann den Energieverbrauch mit den Betriebszeiten korrelieren, um Wartung zu planen und Störungen zu verhindern. Die partielle Zähler-Rücksetzfunktion ist einfach zu implementieren mithilfe eines Digitaleingangs und erlaubt Ihnen, jeden individuellen Maschinenzyklus zu überwachen.

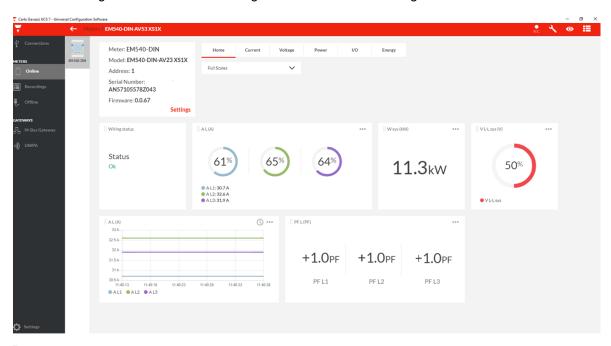
Die MID-zertifizierte Version kann für Abrechnungsmessungen benutzt und in bewohnten oder kommerziellen Gebäuden zum Aufteilen der Kosten unter den verschiedenen Einheiten installiert werden, oder als eine Komponente von Maschinen oder Anlagen, die zertifizierte Messungen erfordern.

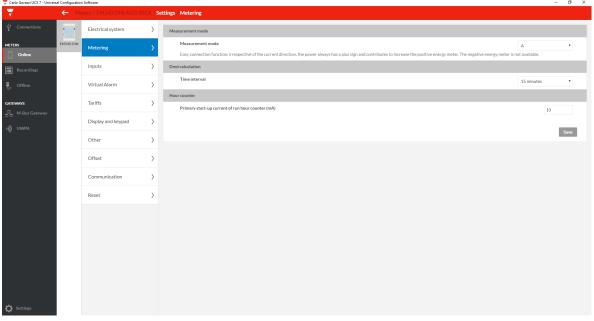
Spezielle Versionen, die bis zu 70 °C/158°F betrieben werden können (PFx70-Modelle), sind die beste Lösung für den Einbau in Ladegeräte für Elektrofahrzeuge, die im Freien aufgestellt und hohen Temperaturen oder direkter Sonneneinstrahlung ausgesetzt sind.

Dank der Messwiederholzeit und der hohen Auflösung der durch einen Modbus RTU Kommunikationsmodul

Hauptfunktionen

- Messung der Wirk-, Blind- und Scheinenergie
- · Messung der hauptsächlichen elektrischen Messgrößen
- Messung der Lastbetriebsstunden und der Analysatorbetriebsstunden
- Messung der gesamten harmonischen Verzerrung (THD) von Strom und Spannungen
- Datenübertragung an andere Systeme über Modbus RTU oder M-Bus
- Verwalten eines Digitalausgangs für Impulse oder Alarmübertragung
- · Darstellen der gemessenen Größen auf dem Display


Hauptmerkmale


- System- und Phasenvariablen (V L-L, V L-N, A, W/var, VA, PF, Hz)
- Anzeigen der verbrauchten Wirkenergie mit einer Auflösung von 0,001 kWh
- Der Frequenzwert ist mit einer Auflösung von 0,001 Hz über Modbus verfügbar
- Mittelwertberechnung (dmd) für Strom und Leistung (kW / kVA)
- Optimierte Benutzerschnittstelle mit 3 mechanischen Tasten
- Modbus RTU RS485 (Datenwiederholung alle 100 ms)
- Kontinuierliche Stichproben jeder Spannung und jedes Stroms
- · LCD-Display mit Hinterleuchtung
- MID-zertifizierte Version
- MID-zertifizierte Zählerauflösung 0,001 kWh
- cULus-Zulassung (UL 61010)
- Konform mit den in IEC/EN 61557-12 niedergelegten Leistungsanforderungen (Leistung und Wirkenergie)
- Betriebstemperatur bis zu 70 °C/158 °F (PFx70-Modelle)

UCS-Software

- · Kostenfreier Download von Carlo-Gavazzi-Website
- Konfiguration über RS485 vom PC oder durch UWP über LAN oder das Web (UWP-Secure-Bridge-Funktion)
- Einstellungssätze können für serielle Programmierung mit einem einzelnen Befehl offline gespeichert werden
- Echtzeit-Datenanzeige für Testen und Diagnose
- Meldung möglicher Verkabelungsfehler und Anzeige von Korrekturschritten, Neuzuweisung der korrekten Phasenzuordnungen oder der Stromrichtungen über Softwaresteuerung.

Aufbau

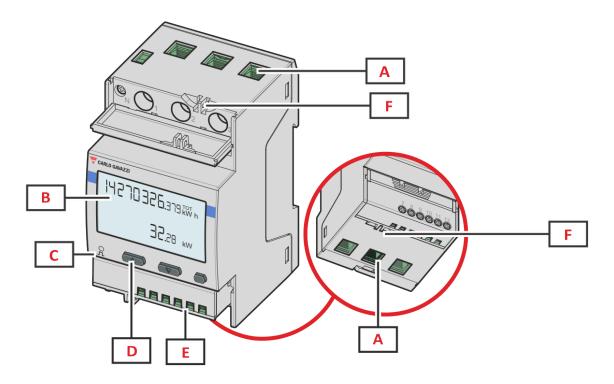


Fig. 1 Frontal

Bereich	Beschreibung
Α	Spannungseingänge/Stromeingänge
В	Anzeige
С	LED
D	Tasten für Browsen und Konfiguration
E	Digitaleingang, Digitalausgang und Kommunikationsanschlüsse
F	MID-versiegeltes Gehäuse

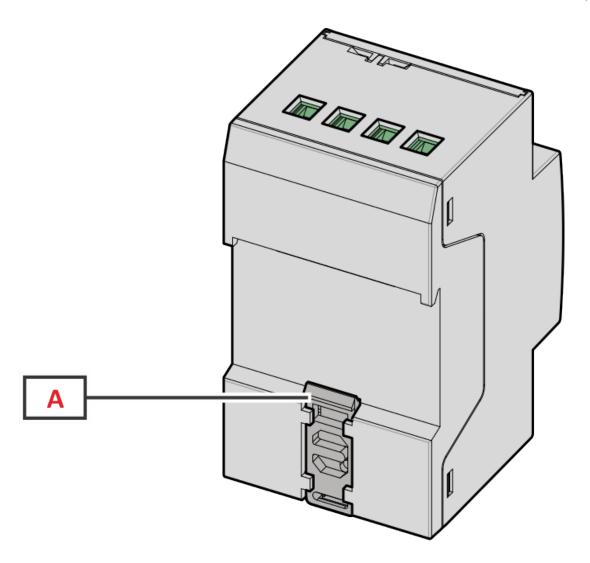


Fig. 2 Rückseite

Bereich	Beschreibung		
Α	DIN-Schienenmontage-Halterung		

Merkmale

Allgemein

Material	Gehäuse: PBT		
Material	Durchsichtige Abdeckung: Polycarbonat		
Cobutaged	Vorderseite: IP40		
Schutzgrad	Anschlussklemmen: IP20		
	Messeingänge (Phase 1,2, 3): 2,5 bis 16 mm ² /8 bis 13 AWG, 2,5 Nm/22,12 lb-in max		
Klemmen	Nullleiter: min. 0,06 mm ² , bis 2,5 mm2/8 bis 29 AWG, 0,5 Nm/4,43 lb-in max		
Mennicii	Eingänge, Ausgänge und Kommunikation: 0,2 bis 1,5 mm ² /15 bis 24 AWG, 0,4 Nm/3,54 lb-		
	in max		
Überspannungskategorie	Kat. III		
Verschmutzungsgrad	2		
Montage	DIN-Schiene		
Gewicht	370 g/0.82 lb (inkl. Verpackung)		
Abmessungen	3-DIN Module		

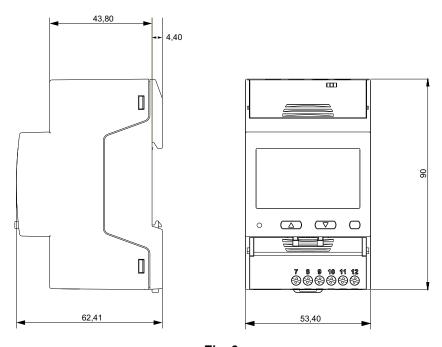


Fig. 3

Umgebungsbedingungen

Betriebstemperatur	Von -25 bis +55 °C/von -13 bis +131 °F (MX-Modelle und PFx-Modelle) -25 bis +70 °C/ -13 bis +158 °F (PFx70-Modelle)		
Lagertemperatur	-25 bis +70 °C/ -13 bis +158 °F		
Elektromechanische Umgebungsbedingung	E2		
Mechanische Umge- bungsbedingung	M2		

Info: relative Luftfeuchtigkeit < 90 %, nicht kondensierend, bei 40 °C (104 °F)

Isolierung Ein- und Ausgänge

Туре	Messe- ingänge	Digitaleingang	Digitalaus- gänge	Serieller RS485- Port	M-Bus Serieller Port
Messe- ingänge	-	Doppelt/Verstärkt	Doppelt/Verstärkt	Doppelt/Verstärkt	Doppelt/Verstärkt
Digitaleingang	Doppelt/Verstärkt	-	keine	keine	keine
Digitalaus- gänge	Doppelt/Verstärkt	keine	-	-	-
Serieller RS485-Port	Doppelt/Verstärkt	keine	-	-	-
M-Bus Serieller Port	Doppelt/Verstärkt	keine	-	-	-

Gemäß: EN 61010-1, EN IEC 62052-31 (MID). Überspannungs-Kategorie III. Verschmutzungsgrad 2.

Kompatibilität und Konformität

Richtlinien	2014/32/EU (MID)		
	2014/35/EU (Niederspannung)		
	2014/30/EU (EMV - Elektromagnetische Verträglichkeit)		
	2011/65/EU, 2015/863/EU (Gefährliche Stoffe in Elektro- und Elektronikgeräten)		
	Elektromagnetische Verträglichkeit (EMV) - Emissionen und Immunität: EN IEC		
	62052-11:2021/A11:2022 (Emissionen nach CISPR 32:2015, Klasse B)		
Normen	Elektrische Sicherheit : EN IEC 61010-1, EN IEC 62052-31:2016, EN IEC 61010-2-030		
Normen	Metrologie : EN IEC 62053-21, EN IEC 62053-23, EN 50470-3:2022 (MID), EN IEC		
	61557-12 (Wirkleistung und Wirkenergie, nur MID-Modelle)		
	Haltbarkeit: EN IEC 62059-32-1:2012		
Zulassungen	CE		
	C UL US LISTED		
	UK		
	CA		

Elektrische Spezifikationen

Elektrisches System				
	Zweiphasen (3 Adern)			
Vamueltatas alaktriaahaa System	Dreiphasig mit Nullleiter (4-drahtig)			
Verwaltetes elektrisches System	Dreiphasig ohne Nullleiter (3-drahtig)			
	Wild-Leg-System (dreiphasig, vieradriges Delta)			
Contaviore alaktriache Anlare MID	Dreiphasig mit Nullleiter (4-drahtig)			
Gesteuerte elektrische Anlage MID	Dreiphasig ohne Nullleiter (3-drahtig)			

Spannungseingänge - MID				
Spannungsanschluss	Direkt			
Nennspannung L-N	120 bis 230			
Nennspannung L-L	208 bis 400 V			
Spannungstoleranz	Von 0,8 bis 1,15 Un			
Überlast	Kontinuierlich: 1,5 Un max.			
Eingangsimpedanz	Siehe "Stromversorgung"			
Frequenz	50 Hz			
Spannungseingänge Nicht-MID-Modelle				
Spannungsanschluss	Direkt			
Nennspannung L-N (Un min bis Un max)	120 bis 240 V			
Nennspannung L-L (Un min bis Un max)	208 bis 415 V			
Spannungstoleranz	Von 0,8 bis 1,15 Un			
Überlast	Kontinuierlich: 1,5 Un max.			
Eingangsimpedanz	Siehe "Stromversorgung"			
Frequenz	Von 45 bis 65 Hz			

Hinweis: Für MID-Versionen ist der Spannungsbereich auf 3x120 (208)...3x230 (400) V und die Frequenz auf 50 Hz begrenzt.

Hinweis: EM530 kann auch in einem Wild-Leg-System (dreiphasig, vieradriges Delta) installiert werden, bei dem eine der Phasen-Nullleiterspannungen höher ist als die beiden anderen.

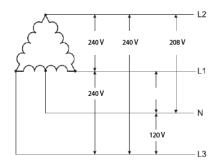


Fig. 4 Zweiphasensystem mit Nullleiter (3-drahtig)

Stromeingänge			
Stromverbindung	Direkt		
Basisstrom (lb)	5 A		
Minimalstrom (Imin)	0.25 A		
Maximalstrom (Imax)	65 A		
Anlaufstrom (Ist)	20 mA		
Überlast	Für 10 ms: 30 lmax (1950 A)		
Eingangsimpedanz	< 3.4 VA		
Scheitelwertfaktor	Scheitelwertfaktor: 4 (Imax Spitze 92 A)		

Strom- versorgung

Туре	über Messspannung
Verbrauch	< 1,3 W/2,6 VA
Frequenz	50/60 Hz

Messungen

Messmethode	TRMS-Messungen von Wellenverzerrungen

Verfügbare Messungen

Wirkenergie	Einheit	System	Phase
Importiert (+) Total	kWh+	•	•
Importiert (+) partiell	kWh+	•	-
Importiert (+) partiell	kWh-	•	-
Exportiert (-) Partiell	kWh-	•	-
Importiert (+) nach Tarif (t1, t2)	kWh+	•	-

Blindenergie	Einheit	System	Phase
Importiert (+) Total	kvarh+	•	-
Importiert (+) partiell	kvarh+	•	-
Importiert (+) partiell	kvarh-	•	-
Exportiert (-) Partiell	kvarh-	•	-

Scheinenergie	Einheit	System	Phase
Total	kVAh	•	-
Partial	kVAh	•	-

Betriebsstundenzähler	Einheit	System	Phase
Gesamt (kWh+)	hh:mm	•	-
Partiell (kWh+)	hh:mm	•	-
Gesamt (kWh-)	hh:mm -	•	-
Partiell (kWh-)	hh:mm -	•	-
Gesamte aktive Betriebszeit	hh:mm	•	-

Elektrische Größen	Einheit	System	Phase
Spannung L-N	V	•	•
Spannung L-L	V	•	•
Strom	Α	•	•
DMD	А	-	•
DMD MAX	A	-	•
Nullleiterstrom	A	•	-
Wirkleistung	W	•	•
DMD	W	•	-
DMD MAX	W	•	-
Scheinleistung	VA	•	•
DMD	VA	•	-
DMD MAX	VA	•	-
Blindleistung	Var	•	•
Leistungsfaktor	PF	•	•
Frequenz	Hz	•	-
THD Strom*	THD A %	-	•
THD Spannung L-N*	THD L-N %	-	•
THD Spannung L-L*	THD L-L %	-	•

^{*} Bis zur 15. Harmonischen.

Info: Die verfügbaren Variablen hängen vom Typ des festgelegten Systems ab.

PFA-Modelle, PFB-Modelle und PFC-Modelle: Die gesamte importierte Wirkenergie (kWh TOT) ist der einzige MID-zertifizierte Zähler. Schein-, Blind- und exportierte Wirkenergie sind nicht MID-zertifiziert. Teilzähler sind nicht MID-zertifiziert.

PFD-Modelle und PFB-Modelle: Gesamte importierte Wirkenergie (kWh+ TOT) und Gesamte exportierte Wirkenergie (kWh- TOT) sind die einzigen MID-zertifizierten Zählermessungen. Scheinenergie und Blindenergie sind nicht MID-zertifiziert. Partialzähler sind nicht MID-zertifiziert.

Alle vom Zähler berechnete Variablen beziehen sich auf den Primärstrom des Stromwandlers.

Energiemessung

Die Energiemessung hängt von dem von Ihnen gewählten Messungstyp ab (wählbar in nicht-MID-Modellen, vom jeweiligen Modell gegeben in MID-zertifizierten Modellen).

A-Messung (Easy connection)

Modelle: MID PFA

EinfacheAnschlussfunktion: unabhängig von der Stromrichtung hat die Leistung immer ein positives Vorzeichen und trägt zum Zuwachs im positiven Energiezähler bei. Der negative Energiezähler ist nicht verfügbar.

B-Messung (Bidirektional)

Modelle: MID PFB und PFD

In jedem Messzeitintervall werden die einzelnen Phasenenergien mit positivem Vorzeichen zum Erhöhen des positiven Energiezählers (kWh+) aufsummiert, während die anderen den negativen Zähler (kWh-) erhöhen.

Beispiel:

P L1 = +2 kW, P L2 = +2 kW, P L3 = -3 kW Integrationszeit = 1 Stunde $kWh+ = (2+2) \times 1 h = 4 kWh$ $kWh- = 3 \times 1 h = 3 kWh$

B-Messung (Net Bidirektional)

Modelle: MID PFC und PFE

Für jede Messintervallzeit werden die Energien der einzelnen Phasen aufsummiert; gemäß dem Vorzeichen des Ergebnisses wird der positive (kWh+) oder der negative Zähler (kWh-) erhöht.

Beispiel:

PL1 = +2 kW, PL2 = +2 kW, PL3 = -3 kW Integrationszeit = 1 Stunde kWh+=(+2+2-3)x1h=(+1)x1h=1 kWhkWh-=0 kWh

Messgenauigkeit

Strom	
Von 2 A bis 65 A	± 0.5% rdg
Von 0,5 A bis 2 A	± 1% rdg

Phase-Phase-Spannung	
Von Un min20 % bis Un max. +15 %	± 0.5% rdg

Spannung Phase-Neutralleiter	
Von Un min20 % bis Un max. +15 %	± 0.5% rdg

Wirk- und Scheinleistun	Wirk- und Scheinleistung	
Von 1,0 A bis 65,0 A (PF=0,5L - 1 - 0,8C)	± 1% rdg	
Von 0,5 A bis 1,0 A (PF=1)	± 1.5% rdg	

Blindleistung	
Von 1,0 A bis 2,0 A (sinφ=0,5L - 0,5C) Von 0,5 A bis 1,0 A (sinφ=1)	± 2% rdg
Von 2,0 A bis 65,0 A (sinφ=0,5L - 0,5C) Von 1,0 A bis 65,0 A (PF=1)	± 2.5% rdg
Wirkenergie	Klasse 1 EN62053-21, Klasse B EN50470-3 (MID)
Blindenergie	Klasse 2 (EN 62053-23)

Frequenz	
Von 45 bis 65 Hz	± 0.1% rdg

Messauflösung

Messgröße	Display-Auflösung	Auflösung über serielle Kom- munikation
Energie	0.001 kWh/kv	/arh/kVAh
Einphasenenergie	0,01 kWh	0.001 kWh
Leistung	0.01 kW/kvar/kVA	0.1 W/var/VA
Strom	0,01 A	0.001 A
Spannung	0.1 V	
Frequenz	0.01 Hz	0.001 Hz
THD	0.01 %	
Leistungsfaktor	0.01	0,001

Anzeige

Туре	Segmente	
Aktualisierungszeit	500 ms	
Beschreibung	Hintergrundbeleuchtetes LCD	
	Momentanwert: 5+1-stellig oder 5+2-stellig	
Variablenablesung	Leistungsfaktor: 1+2-stellig	
	Energie: 8+3-stellig	

Frontal	Rot Impulsgewicht: proportional zum Energieverbrauch: 0,001 kWh pro Impuls

Digitalausgänge/-eingänge

Digitaleingänge

Verbindung	Schraubklemmen	
Anzahl der Ausgänge	1	
Туре	Freier Kontakt	
Function	Remote Status Tarifverwaltung	
	Tarifverwaltung	
	Partialzähler Start/Stopp	
	Partialzähler zurücksetzen	
	Spannung bei offenem Kontakt: 5 V DC +/- 5 %	
	Strom bei geschlossenem Kontakt: 5 mA max	
Merkmale	Eingangsimpedanz: 11,6 kΩ	
Merkmaie	Widerstand bei offenem Kontakt: ≥ 25 kΩ	
	Widerstand bei geschlossenem Kontakt: ≤ 840 Ω	
	Maximale anlegbare Spannung ohne Schaden: 30 V AC	
Konfigurationsparameter	Eingangsfunktion	
Konfigurationsmodalitäten	Per Keypad oder UCS-Software	

Hinweis: Typ S0, Klasse B gemäß EN 62053-31

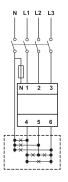
Digitalaus- gänge

Digitalausgang

Verbindung	Schraubklemmen	
Max. Anzahl Ausgänge	1	
Туре	Opto-Mosfet	
Function	Impuls- oder Alarmausgang	
Merkmale	V _{ON} 2,5 V AC/DC max. 100 mA	
	V _{OFF} 42 V AC/DC	
Konfigurationsparameter	Ausgabefunktion (Puls / Alarm)	
	Impulsgewicht (von 0,001 bis 10 kWh pro Impuls)	
	Impulsdauer (30 oder 100 ms)	
	Normaler Zustand der Ausgabe (NO oder NC)	
Konfigurationsmodalitäten	Per Keypad	

Kommunikationsschnittstellen

Modbus RTU


Protokoll	Modbus RTU	
Geräte am gleichen Bus	Max 247 (1/8 Einheitsladung)	
Kommunikations-Typ	Multidrop, bidirektional	
Verbindung	2-drahtig	
Konfigurationsparameter	Modbus-Adresse (von 1 bis 247)	
	Baudrate (9,6/ 19,2/ 38,4/ 57,6/ 115.2 Kbit/s)	
	Parität: (keine / gerade)	
	Stop bit (1 oder 2)	
Aktualisierungszeit	≤ 100 ms	
Konfigurationsmodalitäten	Per Keypad oder UCS-Software	

M-Bus

Protokoll	M-Bus gemäß EN13757-3:2013	
Geräte am gleichen Bus	Max 250 (1 Einheitslast)	
Verbindung	2-drahtig	
Konfigurationsparameter	Primäradresse (1 bis 250) Baud-Rate (0,3 / 2,4 / 9,6 kbps)	
Aktualisierungszeit	≤ 100 ms	
Konfigurationsmodalitäten	Per Keypad	

Anschlusspläne

Fig. 5 Dreiphasig mit Nullleiter (4-drahtig). MID

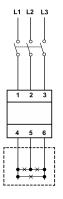


Fig. 6 Dreiphasig ohne Nullleiter (3-drahtig). MID

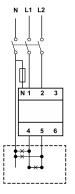


Fig. 7 Zweiphasen (3 Adern)

Digitalausgänge/-eingänge

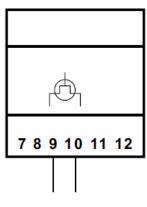


Fig. 8 Output

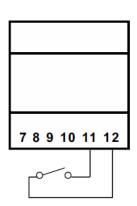


Fig. 9 Eingang

Kommunikation

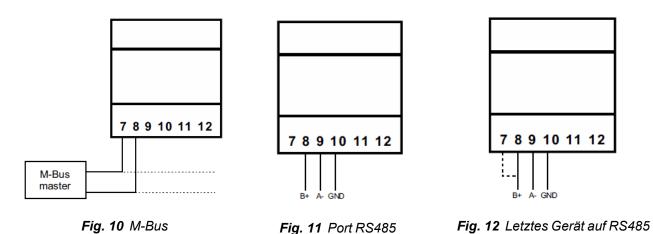


Fig. 11 Port RS485

Referenzen

iverer erize	••		
Bestellcode			
EM540	DIN AV2 3X		
Temperatur bis + auszuwählen	-55 °C/ +131 °F	mit der Möglichkeit, verschiedene	Kommunikationsanschlüsse
Fügen Sie an diese	n Stellen die gewün	schte Option ein:	
Code	Optionen	Beschreibung	
EMEAN DIN AVA SV			

Code	Optionen	Beschreibung
EM540 DIN AV2 3X		-
	01	Digitalausgang
	S1	RS485 Modbus RTU
	M1	M-Bus
	X	Nicht-MID-Modelle
	PFA	MID-Modelle (3P, 3P.n)
	PFB	MID-Modelle (3P, 3P.n)
	PFC	MID-Modelle (3P, 3P.n)
	PFD	MID-Modelle (3P, 3P.n)
	PFE	MID-Modelle (3P, 3P.n)

② EM540 DIN AV5 3X S1 □ 70

Temperatur bis zu +70 °C/ +138 °F mit RS485-Modbus-RTU-Anschluss

Fügen Sie an diesen Stellen die gewünschte Option ein:

Code	Optionen	Beschreibung
EM540 DIN AV5 3X		-
S1		RS485 Modbus RTU
	PFA	MID-Modelle (3P, 3P.n)
	PFB	MID-Modelle (3P, 3P.n)
	PFC	MID-Modelle (3P, 3P.n)
	PFD	MID-Modelle (3P, 3P.n)
	PFE	MID-Modelle (3P, 3P.n)
70		Maximale Betriebstemperatur

- PFA: einfacher Anschluss, der Gesamtenergiezähler (kWh+) ist gemäß MID zertifiziert;
- PFB: nur der positive Gesamtenergiezähler ist gemäß MID zertifiziert. Der negative Energiezähler ist verfügbar aber nicht gemäß MID zertifiziert.

Hinweis: In jedem Messzeitintervall werden die einzelnen Phasenenergien mit positivem Vorzeichen zum Erhöhen des positiven Energiezählers (kWh+) aufsummiert, während die anderen den negativen Zähler (kWh-) erhöhen.

 PFC: Nur der positive Totalisator (kWh+) ist MID-zertifiziert. Der negative Energietotalisator ist verfügbar aber nicht MID- zertifiziert.

Hinweis: Für jedes Messzeitintervall werden die Energien der einzelnen Phasen aufsummiert; gemäß dem Vorzeichen des Ergebnisses zählt das System den positiven (kWh+) oder negativen Totalisator (kWh-) hoch

 PFD: Bidirektional, die gesamte importierte Wirkenergie (kWh+ TOT) und die gesamte exportierte Wirkenergie (kWh-TOT) sind MID-zertifizierte Zähler;

Hinweis: In jedem Messzeitintervall werden die einzelnen Phasenenergien mit positivem Vorzeichen zum Erhöhen des positiven Energiezählers (kWh+) aufsummiert, während die anderen den negativen Zähler (kWh-) erhöhen.

 PFE: Bidirektional, die gesamte importierte Wirkenergie (kWh+ TOT) und die gesamte exportierte Wirkenergie (kWh-TOT) sind MID-zertifizierte Zähler.

Hinweis: Für jedes Messzeitintervall werden die Energien der einzelnen Phasen aufsummiert; gemäß dem Vorzeichen des Ergebnisses zählt das System den positiven (kWh+) oder negativen Totalisator (kWh-) hoch.

COPYRIGHT ©2023

Der Inhalt kann geändert werden. PDF-Download: www.gavazziautomation.com